SOME CASES OF UNSTEADY MOTION OF VISCOPLASTIC
MEDIA IN AN INFINITELY LONG VISCOELASTIC TUBE

R. M. Sattarov UDC 532.595.2+135

§ 1.We consider the unsteady motion of a compressible viscoplastic medium, whose properties vary in
accordance with power and nonlinear laws, in-a thin-walled tube of a viscoelastic Maxwellian material. The
motion is represented by the equation y =7/G+ 7/ .

We assume that initially the flow and pressure in the whole tube, occupying the half-space x= 0, is con-
stant and equal to zero and at time t=0 a pressure p=¢(t) or a flow rate M=y {t) is imparted at the boundary
x =0.

The solution of the problem reduces to solution of the system of differential equations 1]
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When j=1, Eq. (1.1) describes the motion of a "power-law® medium, and when j=2, Eq.(1.1) represents the
motion of a nonlinear viscoplastic medium. Here p is the pressure, M is the mass flow, R is the tube radius,
8 is the thickness of the tube walls, p, is the density of the medium, f; is the cross-scctional area of the tube,
Ky is the modulus of elasticity of the fluid , G is the shear modulus of the tubc material, p is the viscosity
of the tube material, n, is the apparent viscosity, p is the analog of plastic viscosity, r is the hydraulic
radius, n is the nonlinearity parameter, 3, is the dimensionless radius of the core, o is the shear stress of
the tube material, and vy is the shear strain of the tube material; the dot above the letters denotes the operator
d/dt. The more accurate value of m, was obtained from (2], since in [1] it was determined for small values
of the flow core. The initial and boundary conditions for the given problem have the form

Mz, t) =0, p(a, ) =0, t <O

p 0,8y =¢() ) case A,

M0, 8) = () >0 case B.

In addition, we assume that functions p(x, t) and M(x, t} are bounded as x — =,

We solve the problem for case A. Eliminating the mass flow from Egs. (1.1) and (1.2), we obtain a differ-
ential equation for p

AFPPiB — Bap:att — Dap ol = 3°p.otax ‘ (1.3)
with initial and boundary conditions

p(0,2)=0, dp(0,2)/dt =0, &*p(0, z)/dt* =0, (1.4)
p(t! 0) = (P(t)s p(l, °°) = 0,
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where

o A = RI8-20)/G + py/K; = 1iC% B = fyn;/C* + 2Rf,/6pu; D = 2Rp,fom;/bp.
Applying the Laplace transform to (1.3) and (1.4), we obtain

d%p*/3z® — (As® + Bs -~ D)p* = O (1.5)
p*(s, 0) = ¢*(s), p*(s, 00) = 0. (1.6)

p* (s, z) = 6fe“"p (z,0)dt, ¢*(s)= Je—"q (t)d:.
The solution of (1.5) with boundary conditions (1.6) has the form
P, ) = ¢*(s)exp(—z VAT + Bs = D).
Converting to the original, we have

0 for 0<t<—;-
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for t> ._f-
where g = AD- (B/2)2,
The mass flow is given by the formula
I3
M=— fobfe""’"f““’ 20 g, (L.8)
By a similar procedure we obtain the solution for case B in the form
0 ) for 0<Ct <—Z—
_Be o ren(eviV e-&
My =ie ? w(t—Z)—cVB[vu—ne T L2 sz C')dr (1.9)
X 2 o —
z V v-T
‘ for > —Zi;
p(z,t) = — s (%%+ m,,w) dz. _ (1.10)
0

The variation of the tube cross section f is given by the expression [1]
f — fo = (2fo/6u)(dplat + typ),
where ty=p/G is the relaxation time.

The quantities B and D contained in formulas (1.7)-(1.10) are proportional to mj and inversely propor-
tional tou. The parameter m; ("power-law" fluid ) varies with change in n, other conditions being equal, in
the range 3ng/pofyRr —; anincrease in n(n> 1 — dilatant medium) leads to a reduction of my and, hence, B and
D, while a reduction of n(n< 1 — pseudoplastic medium) leads to an increase in my, B, and D. An analysis of
the parameter m, shows that an increase in the nonlinearity parameter, or in the yield stress 7¢(8;) increases
the values of m,, B, and D.

The foregoing shows that in the motion of a "power-law" medium reduction of pressure and flow with time
is more rapid for pseudoplastic media than for viscous and dilatant media. For anonlinear viscoplastic medium
the increase in the nonlinearity parameter n and the yield stress 74(8;) leads to more rapid reduction of
pressure and flow.
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Reduction of the viscosity of the tube material (which is equivalent to reduction of the relaxation time of
the tube material) also leads to reduction of pressure and flow.

The foregoing expresses the important idea that the motion can be affected by altering either the char-
acteristics of the medium being pumped or the viscosity of the tube material.

If we let p =« in Egs. (1.7)-(1.10), they leadto expressions for the pressure and flow in an elastic tube,
and in this case

B = fym;I/C*% D = 0.

Let us now assign a pressure or flow jump at the start of the elastic tube, i.e.,

0 0 t<0
¢ (1) ={ S0 at v ={ (1.11)
Py £0 M, t>0.
Substituting the boundary conditions (1.11) in Egs. (1.7)-(1.10) we obtain in case A
{ e
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Figures 1 and 2 give the results of calculations from Eq. (1.12) for the motion of a "power-law" medium
and a nonlinear viscoplastic medium, respectively. In this case for the "power-law" medium we took mx/C=
1 and for the nonlinear viscoplastic medium, m,yx/C =1, where myy and m,, have the form

0 = dN,/poRE; myy = dnplp,R2,

In Figs. 2 and 3 the solid lines correspond to the parameter n=1; the dashed lines, to n=2; and the
dashed-dot lines, to n = 3.

Figure 1 shows that reduction of the rheological parameter n of a "power-law" medium increases the
time lag in propagation of the jump. As n-+0 the lag tends to infinity, i.e., the pressure over the whole tube is
constant and equal to zero. This is probably due more to the known limitations of the "power-law" rheological
equation in the range of small shear rates than to the actual behavior of the medium in the tube.

Figure 2 shows that an increase in the parameter n and radius of the quasicore zone leads to an increase
in the time lag. With increase in the nonlinearity parameter n the increase in the time lag becomes more
rapid.

§2. We consider the unsteady motion of a compressible "power-law" medium and a nonlinear viscoplas-

tic medium in a thin-walled tube of viscoelastic material. This motion is represented by the Voigt equation
T =Gy +py. The formulation of the problem is the same as in Sec. 1.

The solution of the problem reduces to solution of the system of differential equations [1]

N ap.

T +m;M = — 7’ 2.1)
R G G M p_&p p M
( 5 +2KF) + Soufs 30l 0% +2K oz +290fo dtox =0 2.2)

(the notation is the same as in Sec. 1).
The initial and boundary conditions for this problem have the form
M(z, t) =0, p(z, t) =0, t < 0;

p0,ty=9() } case A,
M(0,2) =P () case B.

Functions p(x, t) and M(x, t) are bounded as x— «, The problem is first solved for case A. Eliminating the
flow M from Egs. (2.1) and (2.2), we obtain a differential equation for p

8p ap ap__ 5 %p, &p (2.3)
Aata +BZ77,3+D— 0z~+atox=

with initial and boundary conditions
ap (0, 22 (0,
[p0.2)=0, 2HA—0, P25 -0, (2.4)
Lp =0, pto)=0,
where A=py/KF; B=A/C?+ Amjfy; D=fAmj/C% 1/A=p/G is the time lag. Applying the Laplace transform to

the system of equations (2.3) a.nd (2.4) and solving the obtained differential equation for the images of the func-
tion p(x, t), we obtain

As® 4 Bs® + Ds)

p* (s, 2) = 9*(s) exr)( PES (2.5)

The original of (2.5) can be obtained in the same way as in [3]. Below we analyze only the asymptotic
behavior of the solution, however, since the general solution leads to rather unwieldy expressions.

When sp/G>>1, expression (2.5) in the original has the same form as Eq. (1.7) and, hence, expressions
for the flow and the solution for case B can be determined from Eqs. (1.8)-(1.10), respectively. All the con-
clusions made in Sec. 1 are obviously still meaningful for this case too. If sp/G «1, the original of (2.5) has

the form
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The change in cross section f is given by the expression [1]

1
F—Tfo= 2'(2"3 S‘e_“"’”pdt.
by

The flow:can be.determined from Eq. (1.8). For case B we have

v ) Vi
Mz, t)= l_/i S P (t - 402’2 ,) e—*dz. @.7)
=Y Fom;
Cvit
We determine the pressure distribution by substituting (2.7) in (1.10). In the case where a pressure or
flow jump is assigned at the start of the tube, we put expressions (2.6) and (2,7) in the form

p(z, 8).po = erfc{l(3n = 1)/4nlE}; (2.8)
M(z, O/M, = erfcl(1/a)C], (2.9)

where
t =22V xyt; L= 2i2Vnot; wuy = C¥myy; %, = C¥lmy,.

Expressions (2.6)-(2.9) can be interpreted in two ways. On the one hand, they give the pressure and flow
distributions in a viscoelastic tube at large times Gt>>u. On the other hand, they give the pressure and flow
distributions at an arbitrary time for infinitely small values of the {ime lag p/G—0, i.e., in an elastic tube,

Hence, at large times the viscoelastic properties of the tube material do not affect the motion. Figures
3 and 4 show the pressure and flow distributions calculated from Eqs. (2.8) and (2.9) for different values of
the nonlinearity parameter n of "power-law" media and different values of the yield stress 7y(8,) and param-~
eter n of nonlinear viscoplastic media; in the particular case where n=1 (viscous liquid) the results agree
completely with those in [3, 4].
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